

HEALTH

University of Stuttgart

MOBILITY

IER Institute of Energy Economics and Rational Energy Use

MOBILITY

Public Energy Efficiency Register of Data Centres (PEER-DC)

10. Plenary Meeting Concerted Action for the Energy Efficiency Directive, 21.-23. March 2022, Lisbon, Portugal.

Prof. Dr. Peter Radgen

Projekt on behalf of : Contract Number: **37EV201030**

Under the technical supervision of the:

Bundesministerium für Wirtschaft und Klimaschutz

×

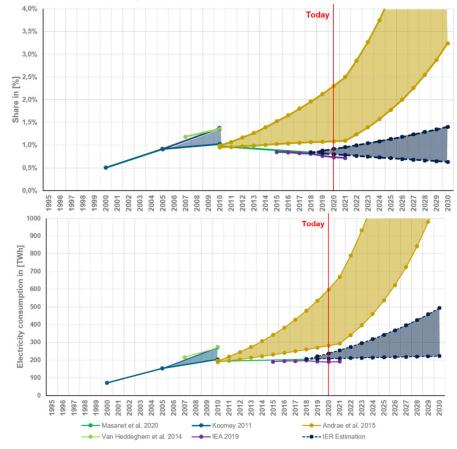
PHILOSOPHY

Background and Motivation

- Large growth in the area of digital infrastructures with significant increase in electricity consumption.
- Lack of transparency with regard to electricity consumption, growth and efficiency, therefore a uniform approach is required for recording and evaluating the efficiency of data centres.
- Energy efficiency and use of renewable energies at European level (cf. RED II and EED Directive).
- Energy Efficiency with high priority given the recent political developments

To be noted: All numbers are given in German format

IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal



University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

23/03/2022

2

Development of global power consumption in data centres

Distribution of Electricity Consumption

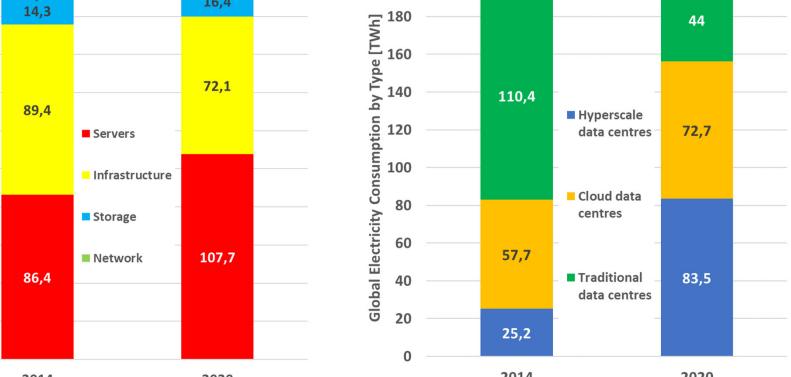
By Component and Type

200

PUE = 1.85

3,7 16,4 Worldwide Electricity Consumption by Component 14,3 180 44 160 72,1 140 110,4 89,4 Hyperscale 120 72,7 data centres Servers [TWh] 100 Infrastructure Cloud data 80 centres Storage 60 57,7 107,7 Network 86,4 Traditional 83,5 40 data centres 20 20 25,2 0 0 2014 2020 2014 2020

Data Source: IEA, Paris, 2021. www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-end-use-and-data-centre-type-2014-2020


IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal

PUE = 1.56

4.0

University of Stuttgart IER Institute of Energy Economics and Rational Energy Use

200

Data Centre Classification

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

Туре	Hyper Scaler	Co-Location	Managed Services Data Centres	Enterprise Data Centres	Edge Data Centres
Description	Data and applications are hosted by a cloud services provider for a broad number of clients. Examples Amazon Web Services Microsoft Azure, Google, IBM Cloud.	 Providing housing for third parties IT infrastructure. Owned by a third party and located off company premises. Co-locator is providing infrastructure (e.g. building, cooling, electricity supply bandwidth, security) Customers providing and managing their IT components (e.g. servers, storage, firewalls). 	Managed by a third party on behalf of a company. The company leases the equipment and infrastructure instead of buying it.	Built, owned, and operated by companies for themselves. Typically housed on the corporate campus.	Small footprint with location close to end users (at the edge of the network) and devices for data that need processing close to the originating source for fast services with minimal latency. Typical applications: - 5G - loT - Healthcare - Autonomous driving - Smart factories and cities
Typical Size	50-300 MW	1-100 MW	500 kW – 20 MW	10 kW – 20 MW	250 kW – 2 MW

Planned Achievements of the PEER-DC Project

(Project Duration until 31.07.2023)

Overall Target

Creating transparency with regard to energy consumption, energy efficiency and environmental protection in the area of data centres

Applied Approach

- Development of a register for data centres and visualisation of the data of the register for easy use
- Development of an evaluation system and evaluation software for energy-efficient data centres
- Analysis of the transferability of the results and the feasibility of the rating system for data centres at European level.
- Communication and Stakeholder Management

IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal

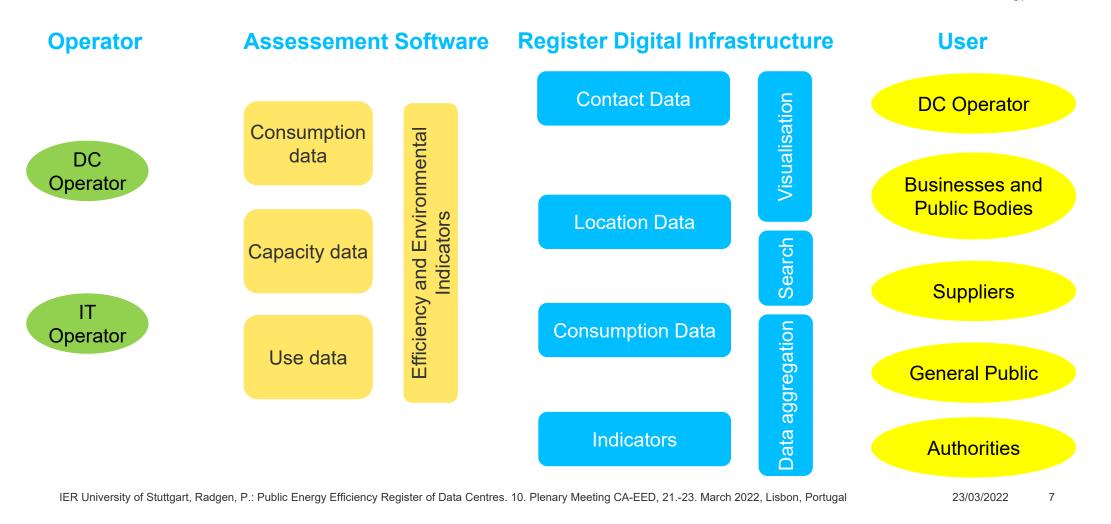
Creating a Win-win situation for all actors

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

Data centre operator

- Visibility of own digital services and climate protection measures
- Competition for the most efficient data centres
- Uniform evaluation standards for comparing data centres
- Creation of a market for waste heat from data centres

Data centre customers


- Overview of available data centre services
- Selection of energyefficient, climatefriendly data centres

Regulator

- Targeted measures to promote IT infrastructures and IT locations
- Basis for development of data centre market and services
- Development of connected load and energy consumption for power plant and power grid planning
- Recording greenhouse gas emissions for monitoring climate protection obligations

Data Collection and Data Sharing

Potential Coverage of the Register

- In principle all operators of digital infrastructures above a certain size should be covered (sizes to be covered under discussion).
- A distinction will be made between the different types of data centres and IT operators
- Data centre operators (Colo) without influence on the efficient operation of IT hardware but IT hardware responsible for 70-80% of total electricity consumption of a data centre
- Therefore IT operators within a data centre should be covered by the register as well
- The PEER-DC project will focus to collect on co-location and managed services data centres but we be open to all interested parties. Participation is on voluntary basis.

Data Collection from Data Centres

(under development; no decisions taken)

Data Centre

(Basic)

- Identification code
- Designation by Owner
- Name of Owner
- Geographical Position (Country, Postcode, Town, Street, Street Number)
- Building area (gross floor area)
- IT-Area (Whitespace)
- Land Area
- Availability class EN 50600 / ISO 22237
- Contact Data (Name, Phone, Mail, Full Address)

Points marked in red are listed in the Commission draft of July 2021 under EED Annex VI Number 2

Data Centre (Technical Data)

- Nominal connected loads of the IT and the entire data centre
- Classification of the data centre according to IT connected load (<100kW, <500 kW; < 1MW, < 5MW; <10MW, <50 MW; <100 MW; >= 100 MW)
- Installed electrical power of emergency generators (if any)
- Installed electrical capacity of generators by energy source (if available)
- Installed electrical storage capacity of the uninterruptible power supply (UPS) system
- Information on the refrigerants and refrigerant charge quantities used
- If applicable, further information

Data Centre (Energy)

- Total Energy Consumption of Data Center
- Annual energy consumption of information and communication technology systems
- Annual energy consumption of cooling systems
- Total consumption of fuels and combustibles
- Type and quantity of refrigerant used in the cooling system, as well as the quantities of refrigerant disposed of and refilled during the year
- Total annual amount of heat discharged from the data centre
- Amount of energy recycled
- Total water consumption and water quality
- Electrical work of self-generated electricity by energy source
- Annual Data Traffic

Data Centre (Indicators)

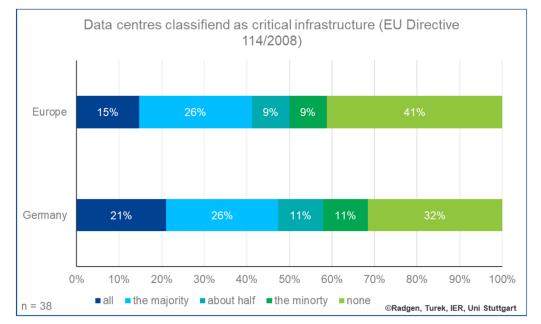
- Power usage
 Effectiveness (PUE)
- Energy Reuse Factor (ERF)

University of Stuttgart

and Rational Energy Use

IER Institute of Energy Economics

- Renewable Energy Factor (REF)
- Cooling Efficiency Ratio (CER)
- Water usage
 effectiveness (WUE)
- Average CPU utilisation ration


Challenge Data Security and Critical Infrastructure

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

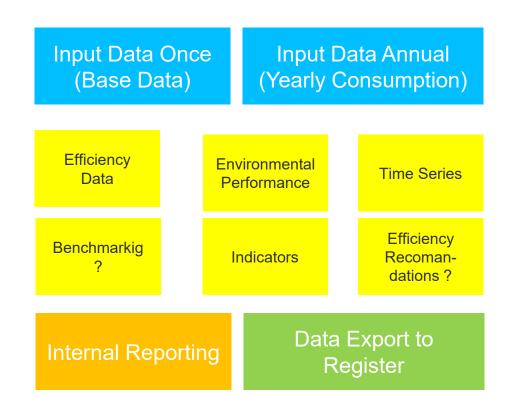
Security of the registry data is an highly important aspect for willingness to provide data

- Separation of registry data database and database for external access
- Database encryption
- General Data Protection Regulation (Regulation (EU) 2016/679 of 27 April 2016)
- Some data sets might require special protection to not dispose the critical infrastructure to additional risks

Source: Radgen, P.; Turek, D.: Study of the impact of the Corona pandemic on Data Centers, IER, University of Stuttgart, 2021

Visualisation of the Data Center Register

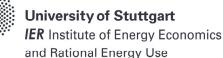
University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use


The public register will aggregate locations instead of showing individual locations only

Analysis Software for Data Center Evaluation and Data Provision to the Data Centre Register

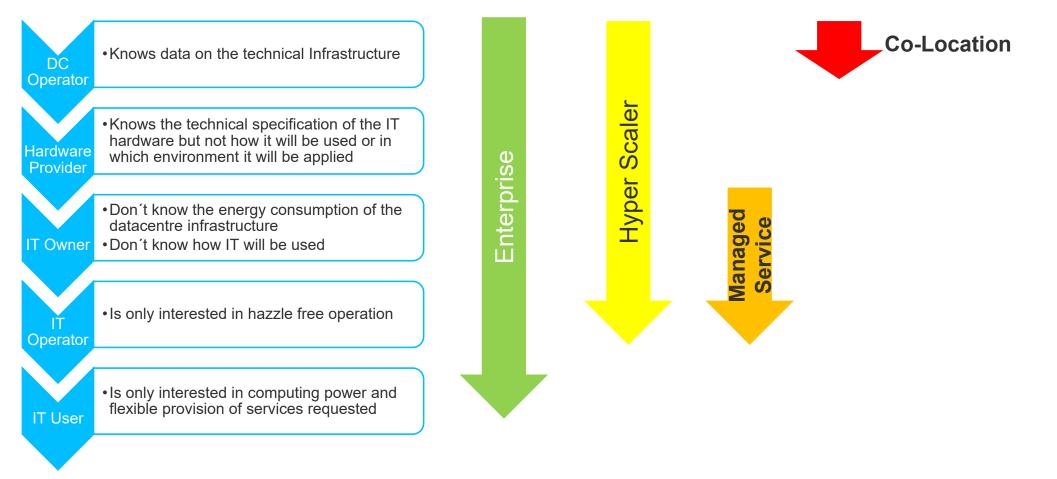
Software Development for the Analysis of the energetical and environmental performance of data centres to

- Easily collect the necessary data
- Support in identifying energy saving opportunities
- Pinpointing to poor operation practices
- Calculate the indicators automatically and in an uniform and comparable way
- Provide an interface for the data export the public energy efficiency register of data centres



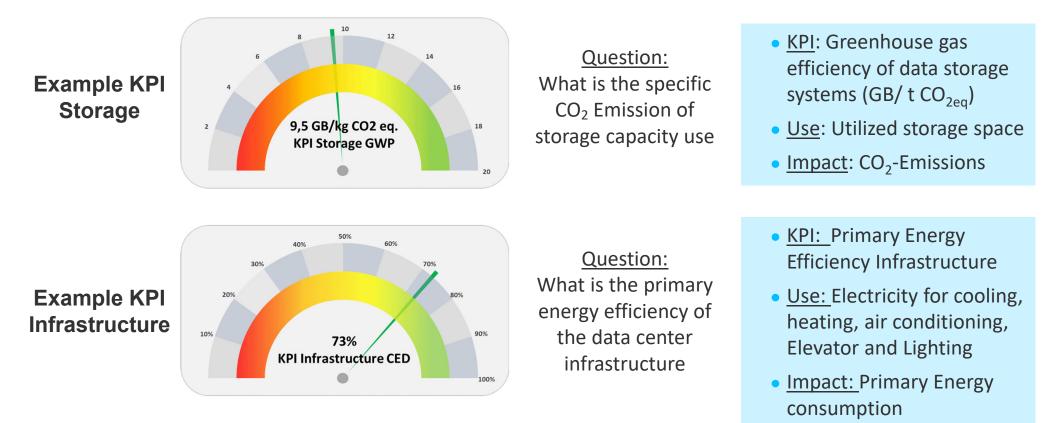
How to define an Energy Efficient Datacentre ?

- · Generally efficiency is defined as the ratio between use and efforts
- Whereas the efforts are typically clear (electricity to run the datacentre), the use is much harder to define
 - The number of computing operations performed by the servers?
 - The storage space occupied with user data?
 - The data transferred via the external network interface?
 - The cooling provided for the servers?
 - ...
- Useful metrics for efficiency are different for different types of data centres and can have a very different level of detail.
- They should also be able to distinguish between technical aspects and organisational aspects of efficiency
- Organisational improvements are cheaper and quicker to implement but technical improvements provide more stable effects



Oversight of Data depending on Business Model

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use


IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal

23/03/2022 14

Which indicators for the analysis of the IT are useful and can be easily calculated based on available data in the data centre

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use

Thank you!

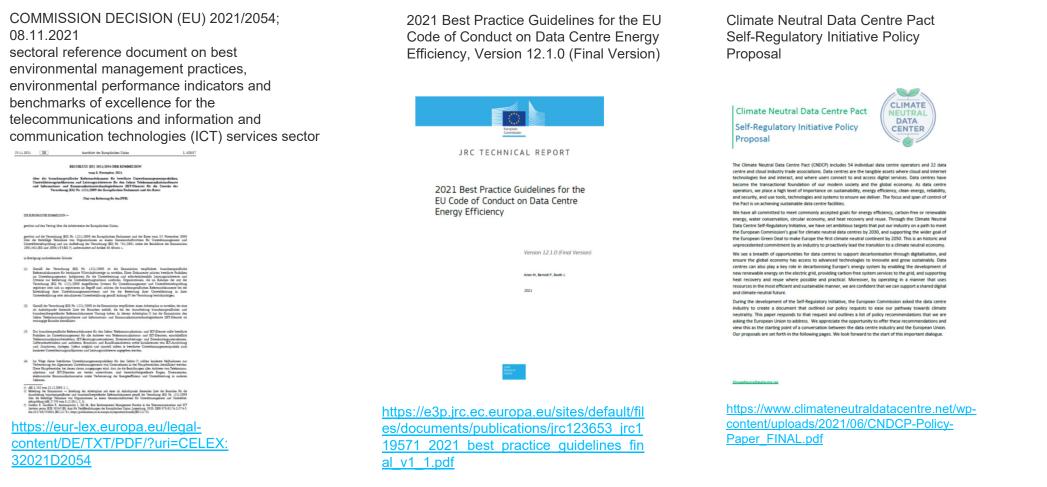
Prof. Dr. Peter Radgen

e-mail Peter.radgen@ier.uni-stuttgart.de phone +49 (0) 711 685- 87877

University of Stuttgart Institute for Energy Economics and Rational Energy Use (IER) Heßbrühlstr. 49a 70565 Stuttgart Germany

Project Consortium

University of Stuttgart *IER* Institute of Energy Economics and Rational Energy Use


Universität Stuttgart IER Institut für Energiewirtschaft

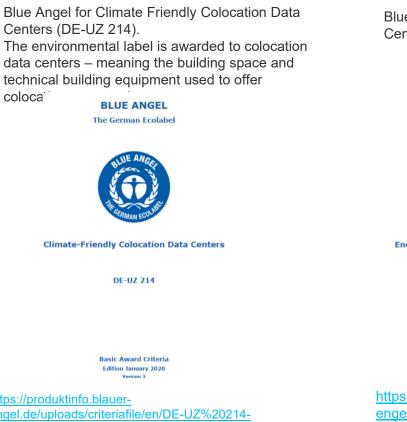
und Rationelle Energieanwendung

Contact: Prof. Dr. Peter Radgen peter.radgen@ier.uni-stuttgart.de Nicola Schuckert nicola.schuckert@ier.uni-stuttgart.de www.peer-dc.de www.peer-de.eu

Project Partners Circle Constitute Scologie Institute for Applied Ecology DATA CENTER Institute for Applied Ecology GROUP

Further Information

IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal


23/03/2022 18

University of Stuttgart

and Rational Energy Use

PUBLIC ENERGY EFFICIENCY REGISTE OF DATA CENTRES - PEERDC IER Institute of Energy Economics

Further Information

Centers (DE-UZ 214).

The environmental label is awarded to colocation data centers - meaning the building space and technical building equipment used to offer

coloca

https://produktinfo.blauerengel.de/uploads/criteriafile/en/DE-UZ%20214-202001-en%20criteria-V3.pdf

Blue Angel for Energy-Efficient Data Center Operation (DE-UZ 161)

> **BLUE ANGEL** The German Ecolabel

Energy Efficient Data Center Operation

DE-UZ 161

Basic Award Criteria Edition January 2019 Version 2

https://produktinfo.blauerengel.de/uploads/criteriafile/en/DE-UZ%20161-201901-en%20Criteria-V2.pdf

University of Stuttgart IER Institute of Energy Economics and Rational Energy Use

IER University of Stuttgart, Radgen, P.: Public Energy Efficiency Register of Data Centres. 10. Plenary Meeting CA-EED, 21.-23. March 2022, Lisbon, Portugal

23/03/2022 19